5,087 research outputs found

    Critical behaviors near the (tri-)critical end point of QCD within the NJL model

    Full text link
    We investigate the dynamical chiral symmetry breaking and its restoration at finite density and temperature within the two-flavor Nambu-Jona-Lasinio model, and mainly focus on the critical behaviors near the critical end point (CEP) and tricritical point (TCP) of quantum chromodynamics. The multi-solution region of the Nambu and Wigner ones is determined in the phase diagram for the massive and massless current quark, respectively. We use the various susceptibilities to locate the CEP/TCP and then extract the critical exponents near them. Our calculations reveal that the various susceptibilities share the same critical behaviors for the physical current quark mass, while they show different features in the chiral limit

    Locate QCD Critical End Point in a Continuum Model Study

    Get PDF
    With a modified chemical potential dependent effective model for the gluon propagator, we try to locate the critical end point (CEP) of strongly interacting matter in the framework of Dyson-Schwinger equations (DSE). Beyond the chiral limit, we find that Nambu solution and Wigner solution could coexist in some area. Using the CornwallJackiw-Tomboulis (CJT) effective action, we show that these two phases are connected by a first order phase transition. We then locate CEP as the end point of the first order phase transition line. Meanwhile, based on CJT effective action, we give a direct calculation for the chiral susceptibility and thereby study the crossover.Comment: 9 pages, 7 figures; Version published in JHE

    The Wigner Solution and QCD Phase Transitions in a Modified PNJL Model

    Get PDF
    By employing some modification to the widely used two-flavor Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model, we discuss the Wigner solution of the quark gap equation at finite temperature and zero quark chemical potential beyond the chiral limit, and then try to explore its influences on the chiral and deconfinement phase transitions of QCD at finite temperature and zero chemical potential. The discovery of the coexistence of the Nambu and the Wigner solutions of the quark gap equation with nonzero current quark mass at zero temperature and zero chemical potential, as well as their evolutions with temperature is very interesting for the studies of the phase transitions of QCD. According to our results, the chiral phase transition might be of first order (while the deconfinement phase transition is still a crossover, as in the normal PNJL model), and the corresponding phase transition temperature is lower than that of the deconfinement phase transition, instead of coinciding with each other, which are not the same as the conclusions obtained from the normal PNJL model. In addition, we also discuss the sensibility of our final results on the choice of model parameters
    • …
    corecore